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Theory of the Spontaneous Polarization 
of the Adsorbed Monolayer of Polar Molecules. 
The Collective Variables Method 
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The theory of the spontaneous polarization of the adsorbed monolayer of polar 
molecules is developed using the collective variables method. The total potential 
of the system is represented as the sum of the one-body and two-body 
interaction potentials. The one-body potential depends on the orientation of the 
molecular dipoles in the external electric field and on the interactions between 
the molecules and the substrate. The two-body potential consists of the sum of 
intermolecular potentials which can be separated into the "short-range" part 
describing the orientation-independent interaction at distances, and the long- 
range part dependent on both the coordinates and the orientations of the 
interacting species. The variation of the configurational Helmholtz free energy 
of the system related to the long-range orientational interactions is shown to 
consist of three terms describing different modes of interactions of density fluc- 
tuations: (a) neglect of particle's density fluctuation or self-consistent mean field 
approximation (SCMF), (b) harmonic oscillations of the particle's density--the 
random phases approximation (RPA), and (c) various unharmonic interactions 
of the fluctuation waves. In the SCMF approximation using the assumption of 
the multiplicative separation of the high-order distribution function the singlet 
distribution function is calculated and the polarization vector of the adsorbed 
monolayer is determined. The corrections to the singlet distribution function 
arising from the terms (b) and (c) of the free energy are calculated. It is shown 
that the spontaneous polarization of the adsorbed monolayer of polar molecules 
may be regarded as the first-order phase transition. 
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1. INTRODUCTION 

In the previous paper ~1) the spontaneous polarization of the adsorbed 
monolayer of polar molecules was treated using the dipole-dipole pair 
interaction potential and the SCMF approximation for the polarization, and 
the conditions of the formation of the polydomain structure of the surface 
polarization were considered. 

In this paper we present the general theory of the spontaneous 
polarization of an adsorbed monolayer of polar molecules with the pair 
interaction potential dependent on the distance between the molecules and on 
their mutual orientations. The pair interaction potential can be separated into 
two parts, (1) the "short-range" term describing the interactions at short 
distances and independent on the molecular orientations and (2) the long- 
range part, which is orientation dependent. This separation is in fact conven- 
tional, and in all of what follows the terms independent on the molecular 
orientations will be attributed for convenience to the "short-range" part. 

We calculate the variation of the configurational Helmholtz free energy 
associated with the long-range interactions using the method of the collective 
variables described in Refs. 2 and 3. The long-range interaction is treated 
against the "short-range" background, i.e., using this short-range part as a 
basis with the various account for the interaction of the density oscillation 
modes, which are the collective variables. As the result the variation of the 
configurational free energy can be expanded into the (infinite) series with the 
successive terms accounting for different character of the interaction of the 
density fluctuations in the long-range interaction, that is, for the different 
degrees of screening of the initial long-range interaction. It is convenient to 
represent each term of the series as a diagram involving both complex 
vertices which describe the correlators of the products of spherical functions 
with variables dependent on the molecular orientations in the adsorbed 
monolayer, and lines denoting the pair correlation function of the system. 
Under certain statistical assumptions (the multiplicative separation of the 

higher-order correlation functions in the SCMF approximation and low 
values of the polarization vector) one can restrict oneself to the calculation 
of the first few terms in the expansions of the free energy to evaluate the 
singlet distribution function and the polarization of the system. The character 
of the dependence of the polarization on the external electric field shows that 
the spontaneous polarization arises as a first-order phase transition. 

The approach t2'3) taken as a principle of the present work can be 
compared with the expansion of the molecular distributions and the 
Helmholtz free energy in the long-range part of the interaction potential.C4-1~ 
The first few terms of this expansion give results identical to the one 
obtained using our approach, leading to the known SCMF and RPA. In this 
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work the diagrams are used to account for the higher-order terms of the 
expansion and in the most simple cases (e.g., homogeneous systems without 
ordering) some infinite classes of these diagrams can be grouped into closed- 
form expressions giving the corrections to the SCMF and RPA methods. (3) 

The alternative to the method described in the present paper is the 
approach which treats the long-range interactions "against the background" 
of the reference system. (H) The collective variables are introduced by 
Gaussian transformation; however, the expressions for thermodynamic 
potentials and correlation functions have not been studied in detail (cf. with 
Ref. 3). 

2. BASIC EQUATIONS 

We consider the structure and correlation properties of the polar 
molecules in the adsorbed submonolayer. The limitation to a single 
monolayer (instead of the more general discussion on the multilayer filling of 
the substrate surface) is justified, perhaps, for the adsorbents of the high 
expressed chemical interactions with the adsorbate molecules. In this case 
the monolayer of the molecules is formed with the mobility and orientation 
sharply different from the corresponding properties of volume phase (see 
below). The monolayer limited by the substrate on one side is submerged in 
the "solvent," consisting of the molecules of the monolayer itself as well as 
the molecules of different nature which are in the space above the monolayer. 

Consider the calculation of the configurational integral 

af 
QN(T, S) = ~ exp(--flB UN)(dF) (1) 

for a system of interacting molecules in an adsorbtion monolayer with 
surface area S. Here Be = 1/kBT, Boltzmann's constant k s and Kelvin 
temperature T, the integration in (1) extends over the configurational space 
of N molecules, (dl ' )=~IN_ldFi where dFi=dRid~  i, dR i the surface 
element and d~ i is related to the element of space angle dI2 i with the relation 
d~i = dJ2 i/2n. 

The total potential energy of the system may be represented as 

(2) 

where the first term is the sum of one-body interactions, including the energy 
of the molecule possessing the dipole moment d i and locayed at point i of the 
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surface in the external electric field E 0, and the energy of interaction between 
the molecule and the surface 

N N 

~(f~) = ~ u(Fi)= ~ [-Eod, + Uo(Oi) ] (3) 
i = 1  i = l  

the second term results from the two-body interactions of the particles 
located at points i, j ,  

v(R, o)  = E rj) = E a, ,  O;) 
u<j i<j 

with R o. = R j  - -  Ri. 
For this last term the following standard-form expansion is valid: 

(4) 

v ( R i j , ~ i ' ~ J )  = Z , , ~ 1 ~ 2  [ R  "~ 0.1 ,.~ 2 * (  uml,m2,A\ ij] Fro1( ' )  Y~m 2 ~ j )  ~A(~Rij) 
tnl ,  m2,~. 

(5) 

with Ox((oR~i)= exp(iitos,), ~01~ v is the azimuth angle of radius vector Rij, 
Ym,(~) the spherical function dependent on the molecular orientation, and 
an asterisk denotes the complex conjugated value. The coefficients of 
expansion (5) are 

v.,0-2 rp ~_(2~)-~ f v(R,; ,&,~;)  y,~,(x?.~ y,~ ~ �9 mltn2~\*', J] - -  m I . . . .  2(2) #; ((0Ri;) dq~R,, dOi d.Qj 

The requirement of the spatial uniformity implies the following symmetry 
restrictions on the function v(R,;, .O,, Y2j): 

(i) It must be invariant with respect to translations. 

(ii) It must be rotation invariant with respect to the simultaneous 
variations of the azimuth angles ~0 i, (p;, which determine the orientations of 
ith and j t h  molecules, and the variation of antic ~oR~j, if these variations are 
equal to each other. 

(iii) It must be invariant with respect to transpositions of two 
molecules. 

(iv) The expression (5) must be real. 

Here we consider the axial-symmetric molecules possessing the dipole 
moment directed along the axis which can be inclined to the adsorbent 
surface. In other words, we investigate the orientational ordering due to the 
pair interactions, dependent on the orientations of the molecule (e.g., the 
dipole-dipole potential) and independent of the geometrical shape of the 
molecules. Otherwise, when the "irregular shape" of the molecules is to be 
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considered, the above symmetry conditions must be attended with the 
requirement of the invariance of expressions (5) with respect to the 
symmetry group of an adsorbed molecule. This case, which seems to be the 
most general one, corresponds to the interference of ordering effects due to 
both the tenzor character of the orientational dependence of intermolecular 
orientational potential and the geometrical shape of the molecules. 

Assuming the above symmetry conditions, one can transform the 
expression (5) to 

v ( R i j ' ~ I ' ~ J )  = E ~)~mll~m22(RlJ) V"I(,(~ "~ I(._2. /2 "ml\  i/ rn 2 (j)••2-•,(q)Rij) (6) 
ml,m2 

with the following relations valid for the coefficients: 

. , . 2  -"~(R,2)  Vmlm2(R12 ) = -tt2, Um2ml (7) 
/21~2 Umtm2(R12) = (--1)  ul-~2"'-O'l'umlm 2-'u2ge(R\*" 12] ~ 

For the dipole~tipole interaction between the adsorbed molecules, for 
example, 

1 
Vdd(R,2, f2, ~ 2 ) - -  3 {[3(dln)(d2n)-d '[d; ' ] (1-K)-d(d21(l+~c)} (8) 

' elR~ 2 

the nonzero coefficients of expansion (6) are 

oo 87~e 2 d2 4nd2 
v'l(R'2) - 3e,(e, + ~2)R~2 ' VlllA(R'2) = v l I I - I ( R 1 2 ) :  (E 1 -~- ~2)R 3,2 

(9) 
4zrd 2 

U 1111(/~ 12) = V l l l ' -  I(R 12) = 
3(el + e2)R~2 

with d[', d F ( i=  1, 2) the lateral and transverse component of the dipole 
moment d of molecule, respectively, n the unit vector directed along the 
radius vector R12, x =  (t :2-~l)/(e 2 +el ) ,  el, e 2 the permittivities of the 
media adjacent to the interface from the adsorbed phase and the substrate, 
respectively. 

The relations (7) are clearly valid for the coefficients of (9). As to 
expression (8), its validity requires not only the condition R12 >> l (l is the 
dipole lever), but also the condition R12 >> h (h is the distance between the 
dipole and interface) is to hold. Note that besides the dipole-dipole pair 
interaction, a self-image potential on a dipole given by Ref. 12 

Kd 2 
uim(O)-- 2el(Zh)3 (1 + cos 2 v ~) (8a) 

has to contribute into u0(X2 ) in (3). 

822/38/3-4-8 
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Because of the chemical interaction of the molecular dipole with the 
surface of the noninert adsorbent, the dipole can be directed either "to" or 
"from" the surface, the orientation depends on the structure of the surface 
and the type of the molecule. For example on the surface formed by protons, 
the dipole moment of the water molecule is directed from the surface. This 
unipolar orientation of the molecular dipoles near the surface is shown to 
exist by the measurements of the potential jump with the adsorbtion of polar 
molecules.(13) 

The preferential orientation of the dipoles at the absorbent surface 
results in the ranging of the polar angle t~ of the dipole orientation between 0 
and n/2 (see Section 5). (Note that the interval 0 ~< 0 ~< z~ would correspond 
to the account of all possible orientations of the dipole). The potential u0(v a) 
is to be symmetric about ~ = 0 due to the homogeneity of the surface. We 
approximate the behavior of u0(v~ ) by some function (see Section 5) which 
takes into account the restriction of the angle t~, and accumulates the 
contributions of both the orienting effect of the surface and the expression 
(8a). 

Perhaps the term spontaneous polarization is not quite correct in this 
case as the change in symmetry of the molecules-dipoles arrangement occur 
not in free but in partially oriented admonolayer (0 ~ t9 ~< 7c/2). Although the 
appearence of surface component of polarization is obliged to interactions 
between admolecules in the system. 

It is to be noted that the proposed model of the adsorbed monolayer of 
polar molecules is by no means general. One can consider the alternative 
model of the adsorbtion of polar molecules on the inert substrate with the 
interaction energy between the surface and the moleculare dipole independent 
of whether the dipole is oriented "to" or "from" the surface. In this case the 
potential u0(~ ) will symmetrical about ~=~/2 [see Eq.(8a)]. The 
corresponding treatment can be performed about for such a model following 
the lines of the present paper, the differences between them will arise in 
Section 5, where the numerical estimates are obtained. The ranging of the 
polar angle of dipole orientation between 0 and zc, and the symmetry of the 
potential u009) about 0 = ~ / 2  would lead, as it seems, to the 
"antiferromagnetic" type of ordering of the molecules instead of the 
"ferromagnetic" one, obtained below for the present model. 

As mentioned at the beginning of Section l, the pair interaction 
potential can always be conventionally divided into two parts, 

v(Rij, Oi, .(2]) = ~p(Rij ) + qO(R~j, J2i, ,Oj) (I0) 

with q~(Rtj ) the short-range pair interaction independent of the orientation 
and decreasing quite rapidly with distance (see below) and qO(R~], ,c2i, O]) the 
long-range part which determines the orientational properties of the system. 
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The expression (6) together with the relations (7) is valid for the long- 
range part of the potential, 

" 2 *  I~)(Rij, ffJi, ff~J)~- Z rm,m2".~"lU2(Rij.,'~ YUm',(-Qi) Ym2 (f2J)O.2-u~((~ (11) 
m,,m2 
. 1 ~ . 2  

where 

(~m,m2 (Rij) (2zt)-I I r Y~'*(~,) ,2 * " 1 f a 2  = . Y m  2 (~ '~J)  O~2--.l(ORij) 

• dI2 i dY2j &on. (12) 

and 
" , " 2  Omtm2(R12) = ~-.2, "'JR ~m2m I \ 12/~ Omlm2(R12)= (-1) Omlm 2 (R12) 

(13) 

To introduce the collective variables we now proceed to the Fourier 
representation of the function ~(R,.j, 12 i, .c2fl. Using the familiar relation 

exp(ikRij ) = ~ iS~(kRifl exp[i((o k -  q~rtt)s] 
S =  --CO 

with ~(kRi f l  the Bessel function of sth order, ~0~ the azimuth angle of vector 
k, one can transform (11) into the expression 

O(Ru,,.(2i -Qj)=L Z exp(--ikRifl ~'  ,~.~.2 (k~ vu,~q 
S k m l ~ m 2  

111,t/, 2 

• YUm22*(.c2j) ql.2_Ul(~Ok) (14) 

fo • 1 " 2  ~ 2 _ _ P A l ( k R )  Omlm2(R )R dR Om,m~(k) = 2ni .2- . ,  " ,  " 2  

where the summation extends over all wave vector components of the 
system. 

The total long-range interaction potential can now be expressed in the 
form 

0(R, .(2) = ~ q~(Ri2,-Qi,-(22) 
i<j 

1 [ ~ 1 , m " 1 " 2 ^ I ~ 1 ^ " 2 "  = 2fin ~.o am,m2(k) pm,(k)Pm2 (k) (15) 
tr/ 2 
" , , ~ 2  

] 1 
N ~ a"~"2(k'~ Y"'(.O "~ Yu_2*(J'2 "~ m,m2'..; --m,~. i/ rn2 \ j; 0u2-u,(~0k) + -~- E 0(ff2i ' "~J) i<j r n , , m  2 

" I , " 2  
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where 

~(g'2 i O j ) = f  ~(R12,~i,a"dj)dR~2 ,-,"'~'~tk~-n ,, ,aulu22tw ~ ~mlm2k ] - - I ' B k ' O Y ' m l m  \ ,~] 

1 N 
- i=~1 exp(ikR~) Ye'(f2.) ~-~,(~Pk) /~Urnl, ( k )  ~ / - ~  .= ml', ,-' 

is the Fourier transformant of the fluctuation of density operator, P0 = N/S is 
the density of molecules in the adsorbed monolayer. The last term in (15) is 
due to the large-scale fluctutions in the system. 

Separating the real and imaginary parts of the Fourier transformant 
pUre(k), one can represent the function for transfer form (R)---to (p)---space of 
the collective variables as follows {2,3): 

g-(p, R, D) = ][I ~I 8(pUre(k) -- fiUm(k)) 
kr rn,~ 

= f  exp [Dr/ ~ '  ~ wUmC(k)(pUm~(k)-/~Um~(k)) 
kr m,/x 

+ ~o~(k)(pUm~(k) --/~Um~(k))] (&o) 

= exp ni ~ ~ Com(k)(pm(k)--dUm(k)) (de)) (16) 
kr m,.. 

where (dco) stands for the phase space elemental volume of variables m, 
] ~ . o  Vim,. do)um~(k) do)UrnS(k), the Fourier transformant/3Urn(k), the collective 
variable pUre(k) and an auxiliary variable WUm(k) are split into the real and 
imaginary parts 

/JUra(k) =/~Um~(k) - i/~Um'(k) 

pUre(k) = pUmC(k) -- ipUmS(k) 

e)Um(k) = coUme(k) + i~oUmS(k) 

the primed sum and product extend over the upper half-space. When deriving 
(16) we used the requirement of reality of the scalar products 
Zk:~O Zm,*t/3urn(k) r and ~k~o ~m,~Pum(k) mUm(k) leading to the 
following relations: 

( -1)  M eOm"(-k ) = coUm*(k) 

(--1)~t d~ , ( _k )  = ~Um *(k) (17) 

(--l)MpmU(--k) = pUm*(k) 
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Introducing the expressions (2)-(4), (10), (15), (16) into (1), one obtains 

QN(T, S) = ~---~-f g-(p, R, O) exp[--fl8 Uo(R) --fl~O(p, O) -- f18 ~,'(J?)] 

X (dR)(d~)(dp) (18) 

1 ~o [ ~'1"2 "1 02* O(p, n) = ~ Y' am,m2(k) Pml(k) pm~ (k) 
m l , m 2  
.1~.2 

ul ~, ~ am]m2( ).1o2 k lml  \v"l[t'~i! Yuz*("Q) ~.2-ul((,Ok)]m2kJ] 
m l ~ m  2 i=1 
"1,"2 

1 
+ ~- Z 0(n;, nj) 

i < j  

for the configurational integral of the system. Here Uo(R ) N = Y~i<j~0(Rij) is 
the net potential from short-range interaction, ( d R ) = ~ ' i d R  i, (d~)= 
I~lU~ d~ i, (dp) = ~['k.o I~m,, dp"mC(k) dp"mS(k) the elemental volume of the 
collective variables phase space. 

In fact, the expression (16) for the configurational integral seems to be 
much more involved than the original formula (1) since it contains the 
integration in the collective variables phase space in addition to the 
integration in the configurational space. If, however, one restricts oneself to 
the calculation of the variation of configurational integral due to the long- 
range orientational interactions in the system, without the calculation of the 
integral itself, the expression (18) turns out to be very useful. 

Define first the reference system, relative to which the ordering will be 
considered: 

1 N  ;exo [ 
where the net potential in addition to the terms describing the one-body and 
two-body short-range interactions contains the term describing the long- 
range fluctuations. 

The configurational integral (19) can be used as a basis for the 
calculation of the distribution functions of the system. First it should be 
noted that these functions may be separated into coordinate and angular 
parts 

(') X2,) (20) P (R1,...,Rn,,-Q1 ..... X2,) = p(')(R, ..... R,)F(')(X?I,..., 
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p<")(R~ .... , R,)  = N(N-  1). . .  ( N -  n + 1) f exp[-flB U~ dR,+,.., dR N 
f exp [-f t ,  Uo(R)] (dR) 

F(")(O, ,..., 0 , )  = f exp[-fl ,  ~/(O) - (ft,~S) Ziu<j 0(0,, Off] dr ... den 
f exp[--fl. ~'(O) -- (ft,~S) }~Y<j ~t(O;, Ofl](dr 

We shall calculate the correlation function F(")(O~ ..... 0 , )  (up to the 
arbitrary high order) using the multiplicative splitting approximation: 

F(n)(o1 ,..., On) = l~I F~")(O,) (21) 
i=1 

Assuming this approximation to be valid, one can perform the integration in 
the equation for the singlet correlation function 

69 In F(1)(O1) 6q~"(O,) F(2)('C21, "C22) a0('c21, ff~2) d.c22 (22)  
eI~, - "~B e l . ~  ~BPo f f (1)  (.C2 i) a~', 

(where Ox is the polar angle which determines the molecular orientation), to 
obtain 

exp[--flB g((O1) --fl~Po f 0('C21, "C22)F(oD(O 1) dO2] (23) 
F~1)(O1) . . . . . . . . . . .  ~ - - - O  

fexp[--flB~g(01)--flBpofO(01,02)Fo (O2)dO2] d 1 

The expression (23) is the transcendental equation which can be used to 
determine the constants characteristic to the singlet correlation function. 
Some examples of its usage will be given below. 

Using Eqs. (18), and (19) the configurational integral can be expressed 
as 

QN(T,S)=Qs F g - ( p ) e x p -  ~ ~' a,nlm2(k) pm~(k)pm2 (k) (dp) 
k~O ml,m 2 

.1,.2 (24) 

1 [ 
g-(p)= SNQs F f g-(p,R,O) exp --flBUo(R)--BB~(O) 

1 N 

k r  m l , m  ? i=l 
JJ" 1 ~ ~2 

fl" ~ O(~Qi, Ofl ] (dR)(d~) (25) 
S i<j 

and, of course, the crucial point in the calculation of the configuration 
integral is the accuracy in determining the Jacobian for the transfer to the 
collective variables space. 
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Using Eq. (16) one obtains for the Jacobian an expression 

1 Z Z 
U(P)-- SNQsF �9 k . o  m , .  

• f (dR)(dr [-/~s Uo(R)--/3BX/(~2 ) 

1 N 
/~1kr m2 (i)r "q'- " ~  Z Z Z a m lm2(k ) aml\V"x (Oi/] ru2 * a 

k.O rnl,m 2 i=1 

/ oN ] V' 0(f2i, f22) _ ire ~ ~ COrm(k)/~Um(k ) S z- i<j  k~O m,~ 

where the second integral represents the Fourier transformant of g-(p); it 
follows then that 

g-(p)= f g-(co)exp [izr ~" ~ COUm(k)pUm(k)] (do) (26) 
k~o  rn,~ 

g_(~) _ 1 [ 
SUQs v .f exp -fl~ Uo(R ) - fib gf (f2) 

1 u ~,lta2 2N Z Z Z ~ VU~(.C2 ] i~ m 2 
kr mlm2 i = 1  

fib O(I2fl2J) - i x  2 2 C~ (dR)(d~) (27) 
S i < j = l  k:#O m.~, 

One can define the semi-invariant expansions of the exponent argument in 
(27) {14) 

(exp (i~=l~ixi) )=exp [vl,~...,,~N (l~i 1-~[il (x~l"''x~)s i , / (28) 

VN introducing t h e  s e m i - i n v a r i a n t s  ( x ~  1 . . .  x N )s ,  t h e  term w i t h  ~Yl . . . . .  ]~N 0 

is to be excluded from the sum in (28). The averaging in (28) is performed 
with respect to the distribution determined by the SCMF approximation 
(19). The first few semi-invariants are 

(X1)  s = ( X l )  , ( X l X 2 ) s  = ( X l X 2 )  - -  ( X l ) ( X 2 )  , 

(XxX2X3), = (x lx2x3)  - [(xlx2)(x~) + (x~x~)(x2) + (x2x~)(Xl)] 

+ 2(XI)(Xz)(X3) 
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Using Eq. (28) one can transform (27) to obtain the following 
exponential form: 

g-(co)=exp [ 1  ~ ~ aUlU-Z(k'l'/YulYU-E**CI)u2-u_x((OO+mam2v~,~\ ~ rn~ m 2 / Z ~n(co)] 
k=#O mlm 2 n>/2 

.~,2 (29) 

where 

(-in)" 
~n(co) -- n! (Nn) a/2 

kl,...,kn ms,~s 
O<s<n) 

ml ~, 1 , " "  comn(kn)~'m,. . .ran(k1 , '", k . )  

(30) 
N ~ 1 "  " '~n k (gn) l /2  - m 1. .mn( 1,"', kn) = (,fi~ml~(kl) "'" fiUmn(kn))s 

The first term in the exponent in (29) implies the multiplicative approx- 
imation for the orientational correlational function. Otherwise it should 
involve the infinite sum over the semi-invariants defined in (28). The value of 
j g . r " U . r k  ..... kn) which is the nth order semi-invariant resulting from the m 1. �9 .rank 1 
averaging of the expression exp[--i%~,kr in g-(co) 
represents the tensor component of the structure factor of the system. 

Using formula (30) one can calculate the tensor components for some 
structure factors: 

N 
/21/12 1 ~' ~2 

J~mlm2 (k l '  k2) = N (YmlYm2)  E exp[i(kl  -~- k2)Rj]  
j=l  

+ (Y~ll)(Y~22) ~ (exp[i(klRl + kERj)]), 0-.l-.2(Ok) (31) 

~/mlm2m3(kl , k2, k3) = ym'~ ~kl+k2+k 3 0 

u 2  u~ u3  k3 ) + (Ym2)(Yml Ym~) htE'(k2, k~ + 

33 g,1 122 + (Ym3)(Yml  Ym2) ht2)(k3 , k~ + k2) ] 

+ l p 3 0 h , 3 ) ( k l ,  k2, k3) ILl  \/Y~i'~ ImV ~ I  #-m(~Pk,) (32) 
iV i:1 i:1 
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where 

j(2)(k,, k2) = f hr Rz) exp[i(klR 1 + kzR2) ] dR,  dR 2 

h (3) (k l, k2, k3) = f  h (3) (R 1, R2, R3) exp [i(k I R,  -t- k 2 R 2 q- k 3 R3) ] dR1 dR2 dR 3 

are the Fourier representations of binary and ternary coordinate correlation 
functions (20): 

h(2)(R,, R2) = g{2)(R,, R2) -- 1 

h(3)(Rl, R z, R3) = g ( 3 ) ( R 1 ,  R 2, R3)  - -  g (Z) (R1 ,  R 2 )  - -  g(2)(R,, R3) 

- gr R3) + 2 

pCon)g(~)(Rx,..., R,)  = pr .... , R~) 

The obvious generalization of (3), (31), (32) for the nth order semi- 
invariant ~/"ml"' 'urn" (k 1 ..... kn) is 

l ' ' '  n 

m l . . . m n \  1 = mi /  �9 + k n , O  

n l > / 1  l<~il<. . .<inj  j= l  I J/ \ j=inl+l 
i n 1 + i <  �9 . . < in 

X h(2)(kq + ""  + ki~l,ki,l+ 1 + ... + ki,) 

' / /q + 3,-T p o Z Z r 
n l > ~ l , n 2 ~ > l  1 ~ < i 1 < . . . < i n l  J=il 

n-hi--n2>/1 inl+l<. . .<in2 
i n 2 + 1 <  �9 . . < in 

J t l  J gn2+l  

Xh(3)(kq+ "'" +kinl,kinl+ 1+ ... +kin2, kin2+ 1+ ... + k i ~ ) + - . .  

+ ~ -  p~ (Y~)  hr .... , k . )  r ) 
j=l i=l 

where 

,..., kn) = f h(n)(R1 .... , Rn) exp[i (k ,R,  + . . .  + knRn) ] dR1 ... d R ,  h(n)(kl 
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is the Fourier representation of the nth-order coordinate correlation function, 
and function h(")(R~,..., R,) is defined by 

k 
h(n)(R,,..., R,) = ~ ( - - 1 ) k - l ( k  - -  1)! H g("~ R,,j) 

[nil i= 1 
( S ~ q  ni =n) 

where the sum extends over all possible unconnected subsets of the whole set 
of variables R~ .... , R, ,  and the product extends over k subsets. 

Using (29), (26) can be written in the following operator form~ 

g-(p) = exp [ n~3 ~n (~p) ] g-o(p) (34) 

where 

k~O m,~ 

~"G((J))-~-'~exp [ +  Z Z ~mlrn2krll'~l~2(k'~[Y~lyv'2zg~2-~tl((~0Af-~2((-tJ)]..'\ ml rn2 / 
k*0 rnlm 2 

.~u2 (36) 
(--1)nN 

\ap ) -  n!(N") ..... 
(l<s<n) (37) 

The advantage of this form for the Jacobian for the transfer to collective 
variables is the possibility to calculate the zero approximation to the 
function g-(p) assuming the Gaussian distribution for Fourier components of 
density fluctuations. In subsequent sections we shall work out the procedure 
to determine g-(p) with respect to g-G(e), the transfer Jacobian in Gaussian 
approximation.(3) 

3. RANDOM PHASES APPROXIMATION 

One of the remarkable features of the collective variables method in the 
form, first proposed in ReL 2 and developed further in Ref. 3, is the 
possibility to calculate the configurational integral in the Gaussian approx- 
imation, termed RPA. 

With the exponent in (34) being omitted, the zero-order approximation 
is 

Q~c( T, S )  = QsF Qne (38) 

with 

k~0 m 1, rrt 2 
/-t 1, ~ 2 

au ~ ~, 2 ( k ~  n " l  ( k ' l  n ~'~ * t'k~] 'nlm2, ,~'m,, ,r'~2 , , j  (dp) (39) 
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and g-o(P) follows from (35), (36) with the coefficient D2(co), which can be 
represented using the expressions (17), (31) in the symmetrical form 

g2 
D2(r176 2 ~'  ~ ~r ~  m2 , , (40) 

k~aO m~,m2 
~ 1,/.42 

g l g 2  ~1  ~ 2 : ~  ~r = [(YUml YU2*'~m2 / - t -po(Ym~)(Ym2 ) h(2)(k)] qtu~_.~(~0k) (41) 

Here h(2)(k)= f exp(ikR12 ) h(2)(R~2)dR12 is the Fourier representation of 
the coordinate correlation function which for the uniform systems is 
dependent on the radius vector of the distance between two molecules. 

Diagonalizing the quadratic form (40) and reducing the expression (36) 
to the product of Gaussian integrals one obtains 

[ '  ] 1 ~ 1 ~ 2  ~1 ~ 2 ~  g-~(p) = exp -- ~-  ~ ~. (.~f'- (k))m~m2Pml(k) Pm~ (k) 
k ~ O  m l , m  2 

•  2 ~ am~,m~(k)(Ym~ g"~*;-m~ , 
k ~ 0  m l ~  2 

~ l~g t2  

-- In (det rt~'"m~l"m~(k)) ] I (42) 

for this expression, where  det~t'mam2(k ) and (~" (k))mlm2 are the deter- 
~t l i t 2  minant and the matrix inverse to  ~r respectively. Introducing the 

expression (42) into (39) and performing the integration one obtains the 
expression for the Helmholtz free energy, 

SNQN(T, S) = / ~ ( ~ d  + ~ + ~ p )  
f l B ~ -  = - in  

N~ 

S N 
fl~r~ d = - l n  N! (43) 

flB~sr = --ln QSF 
flB.~R~, = -- In QRe 

= ~- ~ In det(/" + ~"(k) a(k)) 
k~0 

m l m 2 V * / \ ~ m  1 m 2 / 
ml~m2 
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where ~id, ~SF, JRRP are the components of the free energy for the classic 
ideal gas, the SCMF approximation, and the RPA, respectively; QN(T, S) in 
(43) is represented in the form (38); .~(2(k); d(k) are the matrices written as 
operators; [ is the unit tensor. 

The second-order distribution function which is determined by the long- 
range order interactions in the system can be obtained by differentiating 
expression (43) with respect to the potential (i 1): 

p2(R 12, [21, -02) 

= a(/3.3-sF + fl.cFRp) = p~F(')(-01) F(1)(-02) 
a f l B  ~(R12, ~Q1, -02) 

p2 mz( 2)Ou~.-.z(q)k) + ~ -  ~ ~ exp(-ikR,2 ) r~m'**(-0,) Y"~ I2 
k~O ml,m 2 

1111.2 

I I X ~3aUm@,22(k ) In det(/+ ~ ( k )  d(k)) _ \-ml~Yal --ra2}r"2 g< /; r (44) 

"I"2 
1 V" S ~ [ ~ir • l n d e t ( [ + ~ ( k ) d ( k ) )  + 

k./-o m~Z'~,mz [ r q~(R,2, O1,"O2) a'Afm,rn2(k) 
"1,"2 

.1"2 6(I'r~llre2*~m2 / 1 
- -  am'm=(k) 'r r q~(R,2, "0,, "02) 

where 

6(f(-0)) 
c$flB ~(R,2, OJ, -02) 

-- 2PAN l((f(~-~))~F(O1)(~'~i)~(1)(~'~j)~(~l~i'~~j) d~2id~C"~J 

- f f(-0i) F~oa)(-0i) F(ol)(Oj) 0(-0i, -0j) d-0i d.Qj 

'l J 2 (f(-0) F~~ ~ ' )  + 0(~"-02)] da'2, 

- f f(-0,) F~o"(-0i)[f~(-0i, .(21) "~ 0 ( ~ i '  ~-~2)1 d]"~, I 

and f(-0) is an arbitrary function dependent on the molecular orientations. 
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The total distribution function consists of the distribution function 
which is due to the short-range interaction [Eq. (20) for the second order] 
and the function due to the long-range interactions 

~'(2) (R,2, -Ol, ~2) -t '- ~(2)~Rt 12, ~1, X22) + p2(R12, ~-~1, f~2) (45) 

and the condition for the function (45) to vanish for R12 < 0" (0" is the hard- 
sphere diameter) yields the restriction to be put upon the long-range 
interaction potential domain of definition 

li~(R 12, ~ 1, ,.~2) = 0 if R12 < o (46) 

Thus the condition 

p2(R12, ..Q,,/22) = 0 if R12 < o (47) 

is to attend to the formula (44), which now completely defines the 
distribution function for the long-range interactions. 

The expressions (46), (47) are the consequences of the additional 
assumption of p(2)(R12, .O1, -02) = 0 when R~2 < a used in (45) and satisfies 
the condition of potential minimum f l ~ ( ~ s P + ~ )  in respect to 
f lBl~(R12,ar  in the domain R12 <0", (15'16) In the more general case 
without using the approximation with respect to p(2)(R12,O1,.c22) the 
condition of the optimal separation of interactions leads to self-consistent 
determination of flB~(R12,~(21,~'~2) potential in domain RlzKa with 
condition ~(21(R12 , if21, .(22)= 0 at R12 < o" (mean-spherical approximation). 

Using the expression (43) one can calculate the singlet distribution 
function which describes the ordering in the system 

F(1)(.Q1) = ~ ~flBU0(~I ) --F(I'(~'~I) -~-F(~(~Q1) (48) 

where 

1 
F~(.O 1) = 2N /V' k~0 m l m  z 

[ c~r c3 In det [_, ? + ~r d(k)] 
" ~  r (k) 

.1 .2  6(r"dl r "2 *~ ] 
- amlm2(k) 0.2 .1(00 m2 / 

6~B U (,.(~ 1 ) / (49) 
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5(f(sg)} 
[ [ ( f ( a ) >  f F(ol)(Y~i) F(ol)(~Q]) ~(~"~i~2j) daQ i d~'~j a&u(&) 

--  f F(o 1) ~(~'2i.r i d[2j 

- (f([2)} f F(oD([2i) 1) 
(5o) 

+ f f(ai)F(o')(~?i) ~(I'2,a:) dX'2 i + ( f(O)) - - f ( S ~ l )  1 F(ol)(f21) 

and from Eqs. (49), (50) it is seen that the addend F(1p)(,.Q1) does not affect 
the normalization of the function F(1)(aQ1) .  

The form of Eq. (50) implies that the semi-invariant-like expressions 
combine into the function F~(O1) .  Thus this addend will be small if either 
the deviations from the mean value, or the absolute values of polarization 
will be small. We refer the numerical estimations of the polarization 
according to formula (48) to the last section. 

4. THE CORRECTIONS TO THE RANDOM PHASES 
APPROXIMATION 

We now proceed to the most important part of the problem, the 
estimation of the exponential terms in Eq. (34) and the calculation of the 
configurational integral (24) using the value of g-(p). This approach in fact 
generalizes the results obtained in Ref. 3 for the order appearing in the 
system. 

Note that the contribution of the diagrams expressing the corrections to 
the RPA is negligible provided the assumption of small polarization is 
adopted in Section 5, so that the reader interested in the physically relevant 
results can skip this section. 

The corrections to g-c(p) can be obtained by acting the operators 
~(~3/c3p) and their products on this function, but for the result of the 
integration to be nonzero, it is necessary to separate the terms which are in 
the form o"~ (k~ o"2(k~ r m l ~ ,  ] w m 2 \  1" 

Some definitions from Ref. 3 are useful to introduce. The sum over the 
vectors k I + ... + k,  will be termed the closed one if k a + ... + k, = 0, and 
the irreducible one, if it can not be separated into the closed patterns (for 
instance, k I § . . -  § k 4 = 0 ,  k 5 + ... + k 8 = 0, k 9 § . . .  § k n = 0 ,  etc.). 

The simplest term describing the contribution of the exponential 
operators in (34) with all the sums closed and irreducible, is the product of 
two paired operators 
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~-D3 J~3 ~"G(P) = 2(3!)1 U 3 Z J(ff~ll~2z~33(k1, k2, k3) 
ml~..,~ml3 
Idl,...,Pa~ 

~2 
X~.,'~uS~'3 , lk  k2,k3) m'lm'2m, 3 k l, c~p Uml (k,) c3p ~m~, (k,) 

c9 2 ~9 2 

• ~pUm~2(k2 ) &p~m~,(k2 ) ~p~33(k3 ) ~p~(k3) G(P) (5 1) 

the combinatorial factor 3! in the numerator arising from different pairings 
of derivatives in each of the operators D3(c3/~p). The paired differentiation of 
g-a (p) yields 

e G(P) [ _ (,A(r (k))mm2(,~e" (k))mlm,Pm,(k) 
c3Pm(k ) CgPm, (k) ml~m2 

~ 1 , ~ 2  

X ,0m2 (k) -- ( ,~  (k))mm'J f-G(P) (52) 

The contribution from the pairing of two operators into the 
configurational integral can be calculated by introducing (51) and (52) into 
(24), integrating over the collective variables and transforming to the coor- 
dinate representation. With the factor QSF QRp omitted, one obtains 

1 f ~,~.2~,3 R2, R3) qm,m,m,3(R1, R~, R~) 2.  3! Z qmlm2m3( R I '  ta'~ u'.,ta~ , 
m l , . . . , m '  3 

3 
X [7[ gm*"t(R.- Ri,) dR1 ... dR; 

i= 1 myra,\ l 
(53) 

where 

N 
~ 1/221Z3 , ~ 1 ~ 2 ~ 3  qm,m2m3(R1 R2, R 3 ) -  S 3 ~ ~/m,m2m3(kl,kz,k3) 

kl ,k2 ,k3 

X exp[--i(klR 1 + kzR 2 + k3R3) ] (54) 

/ z ~ t  ! 1 
gmm'(R -- R) = ~-  Z [c~(k)(/+ ~ ' ( k )  6(k))-1 ,tam'l""' exp [ik(R' -- R)] 

k (55) 

It should be noted that the tensor component of the correlation function (55), 
which is the tensor analog of the screened potential, does not coincide with 
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the corresponding component of the correlation 
Eq. (44). 

The definition (54) can be generalized 

function resulting from 

N 
qml" 'mn(R1 '"" Rn) = S N E ~gml.- 'm~(kl ..... kn) 

kl,...,kn 

X exp[--i(klRx + . "  + knRn)] (56) 

The detailed calculation of the function (54) 

qUmilUm22~33(R1, R2, R3) 

=1 
S 3 ~ exp[_i(klR1 + k2R2 + k3R3)] yui\ N~kl+k2+ 

kl,  k2, k3 mi/ k 3 ,0 

~- p2[(Y~mll)(Y~22 Y~m33 ) h<2)(k,, k 2 + k3) 

+ (y~,~(y~,~ y~,3~ h(2)(k2, kl _.}_ k3 ) \ m2/\ ml m3/ 

+ (r~m33)( rg ', r~m ~) h~2'(k3, kl + k0] 

+ P~ 12I (Y~m',)h<3)(ki,k2,k3) I 12[ ~-j,,(~Pk,) (57) 
/ : 1  i : 1  

is as follows. Within the continuous distribution of wave vectors, the first 
term in (57) can be represented as 

" ' /s  3 
i=1 kl,k2,k3 

exp[--i(klR 1 + k2R2 + k3R3) 

- -  i(//1 gOk I + / / 2  (#k2 ~- / /3  (/9k3)] ~kl+k2+k3,0 

= (iH1Y"i\(27r)-6po Jimo~ 

• expI--i[k,(R 1 -- R) + k2(R 2 -- R) + k3(R 3 -- R)]} 

X exp{--i(/zl~0kl +//2~pk2 +//3~0k3)} exp[--e(kl + k 2 + k3) ] (58) 

Performing the threefold integration over the wave numbers one obtains the 
product of three independent integrals, each of them equal to 

9~(r) = (2:0 z lim ( exp(--ikr -- ek - i//~0k) dk 
t ~ + 0  .,' 
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and integrating over (0k yields 

~u(r) = ( 2 7 t )  - 1  i - u  e -iu~' lim (oo e-~k g-u(kr)k dk 
~--*+0 JO 

= i - ~  e - m ~ ' r  X 

6(r), /a = 0 (59) 

1 /'(tUl + 2) V(1/2) t 1, /.t > 0 
Dtr 2 2 '" 'F(Ipl--2) /2)F(I tal /2)  X t (--1)", ~ t < 0  

with F(x) the F-function. Here to obtain the final form of the integral (59) 
the tabular value (iv) for the integral 

e - ~  g-.(rx)x dx = (r/2e)" V(a + 2) r 2 3/2 
e2r(~ + 1) 1 + 7  

1_rr 
~ - - ,  2 ,/a + 

e>o ,~>~o  

and the relation between the hypergeometric function 

r 2) 2 , ~ - , p  + 1; 

r 2 ) - (~ 1)/2 = r~u+ 1)r(1/2) (_1)(. 1>/2 - 7  
r(~/2) r((a + 3)/2) 

• /a+l 1 52 ) 
~ , -  2 ; T ;  7r 

+ 
F ~ + I ) F ( - - 1 / 2 )  ( r 2 ) ,/2 

F ( ~  -- 1)/2) F ( ~  + 2)/2) (--1)"/2 -- ~-f 

X F  /.t ; 3 ;  
' 2 7 

were used. 
Using the value of (59), one obtains for the contribution of (58) the 

following expression: 

Po y"'/ l~ ~.i(Ri- R) dR (60) mi/ 
-- i=1  

Note that the angular dependence of the function 9 . ( r )  do not lead to the 
divergence of the integral at r-~ 0. 

822/38/3-4 9 
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The typical term in square brackets in (57) being integrated, transforms 
into 

- -6  2 ~1 ~2  ~Z3 ( 2 ~ )  Po(Ym,)(Ym:Ym,) l i m  f d k  I d k  I d k  3 d r  I d r  2 h ( 2 ) ( r l ,  r2)  
e-~+O 

[ 3 3 ] 
X exp --i ~,  (kjRj +/tjq)e) -- e ~, kj + i(klr , + (k: + k3)r2) 

j = l  j = l  

3 
= tZl /2 2 /a, 3 2 (Ym~)(Ym2Ym3)Po / h(2)(rl, r2) ~.1(111 - rl) ~ 9 m ( R i -  r2) dr1 dr2 

i = 2  

(61) 

and the last term in (57) transforms into 
3 

(2~)-6po 3 ~I (YUm 5) limo / dk, dka dk3 dra dr2 dr3 h(3'(r,, r2, r3) 
j = l  

[21 • • exp --/J= ki(R J -- rj) + r -- e J= 1 kj 

3 3 

=P~ 1-I (Y~m';)/h(3'(r,, r2, r3) [~-~us(Rs-ra)dr, dr2 dr, (62) 
j = l  j = l  

The contribution from pairing of two operators D/8/Sp) is convenient to 
represent using the graphical notation introduced in Ref. 3. The function 

~t 1//, 2 P3, 3 qmlm2m3(R1,R2,113) corresponds to the complex vertex (6~ that includes the 
field vertices upon which the integration is performed and the correlators of 
the spherical functions products [see Eqs. (60)-(62)]. The field vertices are 
connected with each other by the lines which represent the tensor 
components of the correlation function (55). 

Thus the formula (53) can be expressed in the form ~ 

/ ~ \  I ' -"\  

= T  O + ~  +Y., ~ + 
1�9 

2 - 3 !  

_ I \ / \ / \ / \ 
1 I " ~ - - - J 7  i 1 

+ - - t  j i I + - f J  ~ l  ~ + I i t " i +  
2 1 � 9  i-~i ~of T D ~  ~ol 

\_/  ~_/ \_/ \ / \ j  \._/ 

/ \ 1 \ 
1 I ~ t  

I : i  i ' l  
2 - 3 ! 1  : i  I= t 

\ / \ / 

(63) 

Here the diagram with the complex vertices in lhs represents the contribution 
resulting from the pairing of two irreducible operators D3(c3/Sp). The first 
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diagram on the right-hand side corresponds to the pairing of the vertex deter- 
mined by Eq. (60) to its conjugated vertex. The function (60) corresponds to 
the filled field vertex, at which the three lines end off. The line corresponds to 
the function (55), with its arbitrarily defined end corresponding to the second 
indices of the tensor (55) and the conjugated values of the spherical 
functions in the correlators. 

The next diagram in the rhs of Eq. (63) represents the bonding of the 
vertex (60) with the vertex of type (61). The function (61) corresponds to 
two field vertices enclosed into the dashed contour and emitting one and two 
lines. The rest of diagrams on the right-hand side of Eq. (63) corresponds to 
the bonding of the vertices (61) and (62) with each other. 

One can generalize the above definitions for the case of pairing of two 
irreducible operators 1),(8/~p) with n > 3, the case when the complex 
vertices arise, containing m field vertices (m/> 1). If the number of the 
vertices exceeds one, they are to be enclosed into the dashed contour. The 
function 

P0 r " ,  ~ : 9 ~ ( R i -  R) dR 
-- i = 1  

if m = 1 (64) 

o r  

p~' ~ r"2i h~m~(rl ..... rm) 
j = l  i = n l + . . .  + n j _ l +  I 

)( ~ rtl+'''nJ 
~[ 9 , , ( R / -  rj) dr l ... dr m 

j 1 i=ni+...+n j 1+1 

if m >/2 (65) 

corresponds to every complex vertex with m field vertices emitting n I ,..., n m 
lines. 

Every diagram A with its topological properties contributes to the 
expansion of two pairing operators Dn(8/Sp) with the weight 

1 n! 1 
~ ( A ) -  n! a(A) - a(A) (66) 

where the symmetry number a(A) of the diagram is equal to the number of 
permutations of bonds and of the transformations of the diagram which 
remains its topological properties unchanged. In the formula (66) the factor 
n! in the denominator is related to the coefficient remaining after the pairing 
in the operators l)n(8/Sp) and the one in the numerator results from 
permutations of the bonds. The inverse factorial l/n! corresponds to the total 
of the lines connecting the pair of field vertices of the diagram. 
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It can be readily shown that the factors before each of the diagrams 
from (63) correspond to the above rules. Thus for instance for the first 
diagram on the right-hand side of (63), 

3, 

with the coefficient 3I corresponds to all possible permutations of the bonds, 
and the factor 2 is related to the transformation of the diagram into itself by 
the rotation through the angle of n around the vertical axis. 

The pairing of three (or more) irreducible operators can be performd in 
the similar manner. For the case of three operators paired, the lowest order 
will be characteristic to the term D](~3/c3p)l~4(~/c~p ) the corresponding 
contribution is 

2(2!) 2 

I \ 

=~_ + M I + b 
I 

/ % / \ / 

+t + i + ~ -  
i 2 -  I - 
\,,../ \ ~ /  \ 

/ ~ \  / ~ \  

I +  t 
+5- T i 

. . /  \._/ 

(67) 

The diagrams on the right-hand side of Eq. (67) follow the "complication" of 
the signle vertex with three and four lines; the diagrams corresponding to the 
simultaneous complication of these two vertices are omitted. As before, the 
contribution arising from every vertex corresponds to the expressions (64), 
(65), and the weights of each of the diagrams are in agreement with the final 
form of Eq. (66). 

The contribution of the irreducible operators (34) to the configurational 
integral (24) is to be attend with the contribution from the derivatives paired 
in each operator JDn(Cq/6qp). (13) Only the operators with even n will contribute 
to the final expression. 

Consider the value resulting from the operator ]~6(~/cqp) with all internal 
derivatives paired. Performing first the pairing in the Eq. (37) with the factor 
of ht2)(kl + k z + k 3, k 4 + k s + k6) [see Eq. (24), (33)] one obtains 
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6! 3! N p2 E V"' \  Y~i* 
3[ 3! 2!  6! N 3 N mi/ m} 

m l  m ' 3 i = l  

3 3 

X E h(3)(kl + k2 + k3' --kl -- k2 -- k3) H O-.i(~Oki) H Of.~((f lki)  
k l , k z , k 3  i = 1  i = 1  

X (dp) exp -- Z Z C~ " l " 2  ml,m2\ ( k '~pml (k )  P m ~ ,  (k) 
k:#'O m l , m  2 

" 1 , " 2  

9 2 (9 2 9 2 

X oqp.m,(kl) dqpum~.(k,) 8p.m~(k.~)ct,0.m~.(k2) 8p.m,3(k3)dqp.m~.(k3 ) ~,.SG(p) 

1 )j rldr2d-, r2> - 2 . 3 !  p~ ~-~ Y"' "' Y";* 
m l , . . . , m ~ 3  m i  

3 

X H 9.,(Ri r,) * ' " '" ;(R - 3 ,~(Rt  -- r2) gmim ~, i - -  R[) 
i : 1  

1 . . . .  ,~ (68) 
2 J 

The combinatorial factor in the lhs arises from the partition of the wave 
vectors into two groups consisting of three vectors and their subsequent 
pairing inside the groups. 

The diagrammatic form of the expression (68) corresponds to the first 
diagram on the right-hand side of Eq. (63). Performing the detailed 
calculation one can prove that with the derivatives in the operator/)6(8/8p) 
being paired, the diagrams arises possessing the topology similar to diagrams 
in (63) with the dashed contour enclosing them. These diagrams contain the 
correlation function with the order equal to the number of the field vertices 
of diagram enclosed with the dashed contour. It is to be noted that the 
pairing of the derivatives inside the operators, i.e., the account for the 
reducible sums in the expression (37) results in the manifold of the diagrams 
more than sufficient for the correspondence with the irreducible diagrams to 
be stated. 

Among the omitted reducible diagrams the one possessing the lowest 
vertices and bonds number is 1( -) 

2 @ = T p  ~ ~ (y~, ,2 u l ,  y , i ,  3 - - -  y m 2 ) ( y  m, m' 2 . 

mi~.,,~m ~ 

X j dr 1 dr 2 dR 1 ... dR;h(2)(rl, r2) 
2 

X ]~I ~.,(R, r,) ~ * t R '  "'"; i=,  " - -  m ,  i - - r 2 )  g m , m ~ ( R i - - R [ )  (69) 
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The terms representing different compositions of the irreducible and 
reducible operators will contribute to the configurational integral too. 
Among them the term with the lowest order of vertices and bonds number is 

X f dR dr I dr 2 dR 1 ... dR~ h(2)(rl, r2) 

3 3 

X 1] "2m(Ri- r , )  ,J~a4(R1 -- r2) ~1 ,~.~ju*.(R[ -- R )  
i = 1  i = 1  

4 

X * r * , 3 . 5 ( R  , - r : ) ~ u a ( R a  R) ~[ . , . i  
- -  gm,m~(R,- R;) 

/ = l  

so far only the connected diagrams were considered. The disconnected 
diagrams will of cource contribute into (24) in the form of all possible 
powers of the connected diagrams muliplicated, each of them divided by the 
factorial of the pover value. ~ This results in the total contribution into the 
configurational integral equal to the exponential function of the sum of 
contributions of all connected diagrams. The thermodynamic potentials, in 
particular the Helmholtz free energy (43) is represented by then sum of the 
contributions of all the connected diagrams described above [with the 
inverted sign, see Eq. (43)]. 

The calculation of connected integrals defined by the formulas (63), 
(67), (69), (70), even for the case of low orders, requires the compicated 
integration in the configurational space of some molecules to be performed, 
involving the correlation functions of more than second order with the short- 
range interactions. 

5. NUMERICAL CALCULATIONS AND DISCUSSION 

We now proceed to the calculation of the singlet correlation function 
defined by the Eqs. (48)-(50) and with all the connected diagrams described 
above with inverted sign to determine the polarization of the system. 
Restricting ourselves to the calculation of the mean value of polarization for 
small deviations of the dipoles of molecules from the vertical position (at the 
value of the polar angle ~ = 0), we rewrite the expression (8) for the model 
dipole-dipole potential in the form of the expansion in spherical functions 
Y~I = Y~I(O) - ( 3 / 4 ~ )  1/2 [injtead of Y~I(.Q)], and Yill(t-2 ). This results in in 
the trivial substitution of Y~(.O) instead of Y~I(J2) into the above expressions; 
the additional orientational-independent term arising in the pair interaction 
potential can be introduced into its short-range part. 
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With these modifications being performed, the short-range potential 
becomes 

o(n ,  i) = 

00, if R i j < a  

2e2d2 3, if Ri~ > a 
~,(e~ + e2)R o. 

(71) 

From the Eqs. (8), (9), (14), (15) one can calculate the nonzero matrix 
~ I / Z 2  elements of Ctmlm2(k ). 

O0 O0 aol(k) = a lo(k) = Yio(k ), 

a 111 ,l(k) = a 11~- '(k) = - 3  ~2 i2 (k), 

where 

~ = 4  

a~ ) = 71 io(k ) 

al l  (k) = a ~-11'- l(k) = -72 io(k) 

( 3 )  1/2 ~2 8~2 4n 
- - a ,  y, = ~ f a ,  Y2 = T  a, a - -  /31 

im(k)= f-m(Xy) x-2 dx (m=O, 2; y=ka) 
1 

(72) 

2ndZfl.po 

(el + e2)g 

R Z3 The oscillations of the correlation funct ion h(2)(Rij) decreasing as u 
according to the character of the potential decrease can be modeled by the 
function 

hr = 

--1, 

a T 
A = const 

if Rij < a 

if Rii > a 
(73) 

and as the intention of this section is the estimation of the spontaneous 
polarization due to the pair dipole-dipole interactions in the system, the 
dependence of the dimensionless constant A on the thermodynamic 
parameters (temperature and density) is not significant. 

Define the dimensionless value of the longitudinal component of the 
polarization by the expressions ~1) 

P ~ /2  ffn =-0 d o s i n g  d ~ o s i n t ~ c o s ( o F m ( D ) = p o + A p  (74) 

f il2 f ~r~ Po = dO sin 0 dq~ sin t~ cos ~0F(1)(J'2) (75) 
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__fzE/2 sin/~;o d~osin cosq~ 
J 

F(01)(s = exp(apl sin t~ sin tp) G(O, ~o) 

X dO sin t~ ~! d~0 exp(apl sin 0 sin q~) G(O, ~o) 
--1 

(76) 

(77) 

where 

A~- = ~ -  - ~ e ,  

] 2ae2 p• G(t~, ~0) = exp (apo + c) sin 0 cos ~p - e-~-- 

Pl = (sin t~ sin ~o>, p• = (cos 0>, Uo(O ) = b(1 - exp(-b I t~2)) 

c =fl~Eod, b =fl~u o 

and the coefficient b 1 determines the angular dependence of u0(tq ). Here u 0 is 
the energy of bonding of the adsorbed molecule to the surface, r the dimen- 
sionless value of the external electric field directed along the axis ~0 = 0. The 
expression for u0(0 ) determines the angular dependence of the energy of 
bonding of the adsorbed molecule to the surface. 

The vector of polarization is expressed by (74) in t h e  form of two 
components, the first of them P0 follows from the SCMF theory [see 
Eq. (23)] and the second Ap results from the variation of the free energy A J -  
determined by SPA [Eqs. (43), (49)] and by all connected diagrams 
considered in Section 4. The expression (77) explicitly represents the singlet 
correlation function in the SCMF approximation (23). 

As it was mentioned above the expression (75) is the multiparametrical 
transcendental equation for the polarization in the SCMF approximation. 
This equation was derived and investigated in Ref. 13 for the case Pl = 0 and 
in the first-order iterative approximation for Pl = (1 -p~)Uz. In general case, 
however, we expect P l # : 0  and at sufficiently large polarization 
(corresponding to the approximate inequality a(sin 2 0 sin 2 ~p) ~ 1, see below) 
the parameters of the singlet orientational function and the value of the 
polarization vector are to be calculated from the following set of the 
transcendental equations: 

3The Eqs. (11)-(13) of  Ref. 1 corresponding to the Eqs. (75) and (77) of the current paper 
contain an erratum in the definition of the permittivities dependence of  the a, and the term 
sin 0 is to be inserted into the integrands. 
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Po = Go ~ ~/2 

p •  = G o  l ~  z~/2 
~0 

Pl = Go 1 (,~/z 
~0  

where 

dO sin 0~ f  d~0 sin 0 cos r cosh(apl sin 0 sin ~o) G(0, (p) 

dO sin 0 f~ d~p cos 0 cosh(apl sin 0 sin ~) G(0, ~) 

dO sin 0 f~  de sin 0 sin ~0 sinh(apl sin 0 sin ~o) G(O, q~) 

(78) 

G O = d0 sin 0 d~o cosh(apl sin 0 sin ~0) G(O, ~o) 

These equations were solved using the computer program involving the 
iteration procedure and the chord method ~18) the results are plotted in Fig. 1 
showing the dependence of p0 on e at el = ~2 = 1 for different values of the 
parameters a, b, b 1. The calculations show that there are no values pl 4:0 at 
all, i.e., only the longitudinal part (directed along the field) of the surface 
component of the polarization vector can exist. 

We now turn to the more precise calculation of the polarization using 
Eq. (74) and taking account of the contribution of the free energy variation 
due to RPA and all connected diagrams into the Ap. We shall consider the 
case of small polarization (p ~ 1) and in the calculation of the free energy 
we shall restrict ourselves to the evaluation of the first-order term in p. 

p ' l O  

BI_5 
- - - - - - - - -=-=-=-:_2 

I I i ~ f "~ [ I 

J X o  

F 

F ig .  1. The  d e p e n d e n c e  o f  p0  [Eq.  (80) ,  d a s h e d  l ines ]  a n d  p = Po + Ap [Eqs.  (79) ,  (80) ,  so l id  
l ines]  on  e a t  d i f fe ren t  v a l u e s  o f  p a r a m e t e r s :  1, a = 4.8,  b = 8.0, b 1 = 1 ; 2, a = 4.6, b = 8.0, 

b 1 = 1; 3, a = 4.2, b = 8.0, b I = 1. F o r  c u r v e  A B C D  see  text .  
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First it can be seen that in this approximation the contribution of the 
diagram into A~" can be neglected. In fact, the most significant contribution 
is due to the diagram (69), which contains the least number of the field 

( y + l \  vertices and bonds entering them. If one realizes that (Y~) ~ p2, t 1 / ~ P, 
calculate the order of the correlators of the products of spherical functions, 
and use Eqs. (55) and (72), the contribution of this diagram will be proved 
to be O(p3). Thus only the RPA term [Eqs. (48)-(50)] will contribute into 
Ap. Taking into account the terms of order p in det([ + ~ d )  and performing 
the calculations defined by expressions (48)-(50), (76) one obtains 

Ap =-AT \~fifl~Uo(Y2) sin 0 cos q~ cos(2nx)x -5 dx (79) 

where the Fourier transformations (73), the expressions (72), and the 
asymptotic formula 

lira ~.m(XZ) g.m(XZ,)xdx= 6 ( z - z ' )  
L~c~ Z 

were used. For the functional derivative one has to substitute the expression 
(50); the averaging in (79) is to be performed over the distribution with 
respect to the SCMF approximation (77) with the constants which can be 
calculated from the set of the equations that can be obtained from (78) by 
performing the q~ integration at p~ = 0: 

f 
~/2 

Po = G-1 sin 2 0 GI(0 ) dO 
~0 

~ /2 

Pl = G-1 sin 0 cos 0 Go(O ) dO 
~0 

(80) 
G,~(O)=Im[(apo+c)sinO]exp[-2a62picosO-uo(O)], m = 0 , 1  

G - (x/2 Go(O) sin 0 dO 
--~0 

where Ira(x) is the Bessel function of an imaginary argument. The result of 
the calculation of P0 according to the SCMF theory [Eqs. (80)] and the 
values of the resulting polarization vector p = Po + Ap [Eq. (79)] are shown 
in Fig. 1 for e 1 -~ e 2 = 1. 

The curves po(e) contain the metastable (BC and DE) and the unstable 
(CD) sections (of the van der Waals curve); this feature is due to the 
assumptions involved in the SCMF approximation, m The restoration of the 
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stability using Maxwell's rule (19) yielding the straight line BE enables us to 
calculate the polarization jump at zero external electric field, thus the system 
undergoes the first-order phase transition. 

The van der Waals loop characteristic to the curve of types 1 and 2 
vanishes at sufficiently low values of a (or large b and bl), so that the 
resulting c dependence of p becomes monotonic and the first-order phase 
transition does not exist. It is seen from Fig. 1 that the disconsistency 
between p and P0 becomes more significant as p increases. 

For the typical values of the parameters (characteristic for the water 
molecule) a = 4.0 A, d o = 1.84 D, and T =  300 K, P0 = 4/ha2 one obtains 
a = 5.15. The constant b describes the bonding energy of the molecule with 
the substrate and for u 0 = 4 kcal/mol b = 6.66. 

Thus the monolayer packed sufficiently dense with the molecules 
(large a) polarizes, and the arising of the total macroscopic dipole moment 
corresponds to the first-order phase transition. The polarization of this kind 
was in fact observed experimentally (see Refs. 20 and 21); this polarization 
results in the arising of the rigid dipole moment of anisotropic colloid 
particles in a polar media. One can easily prove that the polarization of the 
surface of colloid particle leads to the constant dipole moment arising along 
the anisopy axis. (1) 

Finally it is interesting to discuss from the viewpoint of the general 
results obtained in the present paper the behavior of the polarization in the 
model in which all the molecular dipoles possess the same orientation with 
respect to the surface. We proposed this model in Ref. 1 as an example of the 
most simple approach to the calculation of the polarization with the possible 
variations of the dipole orientations neglected. The solution of the 
appropriate algebraic equation corresponds to the fractured curve LMNP 
shown in Fig. 1 for parameter values a = 10.5, b �9 bl = 9.5 (see Ref. 1). One 
can show however the assumption of the multiplicative splitting (22) to be 
exact for this model. It follows from Eq. (50) that the corrections to the 
singlet correlation function arising from the RPA and from all connected 
diagrams vanish, thus in the framework of the proposed model the solution 
for the polarization is exact. 
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